
Decompiler internals: microcode
Hex-Rays
Ilfak Guilfanov

Presentation Outline

• Decompiler architecture
• Overview of the microcode
• Opcodes and operands
• Stack and registers
• Data flow analysis, aliasibility
• Microcode availability
• Your feedback

• Online copy of this presentation is available at
http://www.hex-rays.com/products/ida/support/ppt/recon2018.ppt

(c) 2018 Ilfak Guilfanov

Hex-Rays Decompiler

• Interactive, fast, robust, and programmable decompiler
• Can handle x86, x64, ARM, ARM64, PowerPC
• Runs on top of IDA Pro
• Has been evolving for more than 10 years
• Internals were not really published
• Namely, the intermediate language

(c) 2018 Ilfak Guilfanov

Decompiler architecture

• It uses very straightforward sequence of steps:
Generate microcode

Transform microcode (optimize, resolve memrefs, analyze calls, etc)

Allocate local vars

Generate ctree

Beautify ctree

Print ctree

(c) 2018 Ilfak Guilfanov

Decompiler architecture

• We will focus on the first two steps:
Generate microcode

Transform microcode (optimize, resolve memrefs, analyze calls, etc)

Allocate local vars

Generate ctree

Beautify ctree

Print ctree

(c) 2018 Ilfak Guilfanov

Why microcode?

• It helps to get rid of the complexity of processor
instructions

• Also we get rid of processor idiosyncrasies. Examples:
 x86: segment registers, fpu stack
 ARM: thumb mode addresses
 PowerPC: multiple copies of CF register (and other

condition registers)
 MIPS: delay slots
 Sparc: stack windows

• It makes the decompiler portable. We “just” need to
replace the microcode generator

• Writing a decompiler without an intermediate language
looks like waste of time

(c) 2018 Ilfak Guilfanov

Is implementing an IR difficult?

• Your call :)
• How many IR languages to you know?

(c) 2018 Ilfak Guilfanov

Why not use an existing IR?

• There are tons of other intermediate languages: LLVM,
REIL, Binary Ninja's ILs, RetDec's IL, etc.

• Yes, we could use something
• But I started to work on the microcode when none of the

above languages existed
• This is the main reason why we use our own IR

mov.d EAX,, T0
ldc.d #5,, T1
mkcadd.d T0, T1, CF
mkoadd.d T0, T1, CF
add.d T0, T1, TT
setz.d TT,, ZF
sets.d TT,, ZF
mov.d TT,, EAX

(this is how it looked like in 1999)

(c) 2018 Ilfak Guilfanov

A long evolution

• I started to work on the microcode in 1998 or earlier
• The name is nothing fancy but reflects the nature of it
• Some design decisions turned out to be bad (and some of

them are already very difficult to fix)
• For example, the notion of virtual stack registers
• We will fix it, though. Just takes time
• Even today we modify our microcode when necessary
• For example, I reshuffled the instruction opcodes for this

talk...

(c) 2018 Ilfak Guilfanov

Design highlights

• Simplicity:
 No processor specific stuff
 One microinstruction does one thing
 Small number of instructions (only 45 in 1999, now

72)
 Simple instruction operands (register, number,

memory)
 Consider only compiler generated code

• Discard things we do not care about:
 Instruction timing (anyway it is a lost battle)
 Instruction order (exceptions are a problem!)
 Order of memory accesses (later we added logic to

preserve indirect memory accesses)
 Handcrafted code

(c) 2018 Ilfak Guilfanov

Generated microcode

• Initially the microcode looks like RISC code:
 Memory loads and stores are done using dedicated

microinstructions
 The desired operation is performed on registers
 Microinstructions have no side effects
 Each output register is initialized by a separate

microinstruction
• It is very verbose. Example:

004014FB mov eax, [ebx+4]004014FE mov dl, [eax+1]00401501 sub dl, 61h ; 'a'00401504 jz short loc_401517

(c) 2018 Ilfak Guilfanov

Initial microcode: very verbose
2. 0 mov ebx.4, eoff.4 ; 4014FB u=ebx.4 d=eoff.42. 1 mov ds.2, seg.2 ; 4014FB u=ds.2 d=seg.22. 2 add eoff.4, #4.4, eoff.4 ; 4014FB u=eoff.4 d=eoff.42. 3 ldx seg.2, eoff.4, et1.4 ; 4014FB u=eoff.4,seg.2,; (STACK,GLBMEM) d=et1.42. 4 mov et1.4, eax.4 ; 4014FB u=et1.4 d=eax.42. 5 mov eax.4, eoff.4 ; 4014FE u=eax.4 d=eoff.42. 6 mov ds.2, seg.2 ; 4014FE u=ds.2 d=seg.22. 7 add eoff.4, #1.4, eoff.4 ; 4014FE u=eoff.4 d=eoff.42. 8 ldx seg.2, eoff.4, t1.1 ; 4014FE u=eoff.4,seg.2,; (STACK,GLBMEM) d=t1.12. 9 mov t1.1, dl.1 ; 4014FE u=t1.1 d=dl.12.10 mov #0x61.1, t1.1 ; 401501 u= d=t1.12.11 setb dl.1, t1.1, cf.1 ; 401501 u=dl.1,t1.1 d=cf.12.12 seto dl.1, t1.1, of.1 ; 401501 u=dl.1,t1.1 d=of.12.13 sub dl.1, t1.1, dl.1 ; 401501 u=dl.1,t1.1 d=dl.12.14 setz dl.1, #0.1, zf.1 ; 401501 u=dl.1 d=zf.12.15 setp dl.1, #0.1, pf.1 ; 401501 u=dl.1 d=pf.12.16 sets dl.1, sf.1 ; 401501 u=dl.1 d=sf.12.17 mov cs.2, seg.2 ; 401504 u=cs.2 d=seg.22.18 mov #0x401517.4, eoff.4 ; 401504 u= d=eoff.42.19 jcnd zf.1, $loc_401517 ; 401504 u=zf.1

(c) 2018 Ilfak Guilfanov

The first optimization pass

2. 0 ldx ds.2, (ebx.4+#4.4), eax.4 ; 4014FB u=ebx.4,ds.2,;(STACK,GLBMEM) d=eax.42. 1 ldx ds.2, (eax.4+#1.4), dl.1 ; 4014FE u=eax.4,ds.2,;(STACK,GLBMEM) d=dl.12. 2 setb dl.1, #0x61.1, cf.1 ; 401501 u=dl.1 d=cf.12. 3 seto dl.1, #0x61.1, of.1 ; 401501 u=dl.1 d=of.12. 4 sub dl.1, #0x61.1, dl.1 ; 401501 u=dl.1 d=dl.12. 5 setz dl.1, #0.1, zf.1 ; 401501 u=dl.1 d=zf.12. 6 setp dl.1, #0.1, pf.1 ; 401501 u=dl.1 d=pf.12. 7 sets dl.1, sf.1 ; 401501 u=dl.1 d=sf.12. 8 jcnd zf.1, $loc_401517 ; 401504 u=zf.1
• Only 8 microinstructions
• Some intermediate registers disappeared
• Sub-instructions appeared
• Still too noisy and verbose

(c) 2018 Ilfak Guilfanov

Further microcode transformations

And the final code is:

This code is ready to be translated to ctree.
(numbers in curly braces are value numbers)

The output will look like this:

2. 1 ldx ds.2{3}, ([ds.2{3}:(ebx.4+#4.4)].4+#1.4), dl.1{5} ; 4014FE; u=ebx.4,ds.2,(GLBLOW,sp+20..,GLBHIGH) d=dl.12. 2 sub dl.1{5}, #0x61.1, dl.1{6} ; 401501 u=dl.1 d=dl.12. 3 jz dl.1{6}, #0.1, @7 ; 401504 u=dl.1

2. 0 jz [ds.2{4}:([ds.2{4}:(ebx.4{8}+#4.4){7}].4{6}+#1.4){5}].1{3},#0x61.1,@7 ; 401504 u=ebx.4,ds.2,(GLBLOW,GLBHIGH)

if (argv[1][1] == 'a')...

(c) 2018 Ilfak Guilfanov

Minor details

• Reading microcode is not easy (but hey, it was not
designed for that! :)

• All operand sizes are spelled out explicitly
• The initial microcode is very simple (RISC like)
• As we transform microcode, nested subinstructions may

appear
• We implemented the translation from processor

instructions to microinstructions in plain C++
• We do not use automatic code generators or machine

descriptions to generate them. Anyway there are too many
processor specific details to make them feasible

(c) 2018 Ilfak Guilfanov

Opcodes: constants and move

• Copy from (l) to (d)estination
• Operand sizes must match

ldc l, d // load constantmov l, d // move

(c) 2018 Ilfak Guilfanov

Opcodes: changing operand size

• Copy from (l) to (d)estination
• Operand sizes must differ
• Since real world programs work with partial registers (like

al, ah), we absolutely need low/high
xds l, d // extend (signed)xdu l, d // extend (unsigned)low l, d // take low parthigh l, d // take high part

(c) 2018 Ilfak Guilfanov

Opcodes: load and store

• {sel, off} is a segment:offset pair
• Usually seg is ds or cs; for processors with flat memory it

is ignored
• 'off' is the most interesting part, it is a memory address

stx l, sel, off // store value to memoryldx sel, off, d // load value from memory

Example:

ldx ds.2, (ebx.4+#4.4), eax.4stx #0x2E.1, ds.2, eax.4

(c) 2018 Ilfak Guilfanov

Opcodes: comparisons

• Compare (l)left against (r)right
• The result is stored into (d)estination, a bit register like

CF,ZF,SF,...

sets l, d // signsetp l, r, d // unordered/paritysetnz l, r, d // not equalsetz l, r, d // equalsetae l, r, d // above or equalsetb l, r, d // belowseta l, r, d // abovesetbe l, r, d // below or equalsetg l, r, d // greatersetge l, r, d // greater or equalsetl l, r, d // lesssetle l, r, d // less or equalseto l, r, d // overflow of (l-r)

(c) 2018 Ilfak Guilfanov

Opcodes: arithmetic and bitwise operations

• Operand sizes must be the same
• The result is stored into (d)estination

neg l, d // -l -> dlnot l, d // !l -> dbnot l, d // ~l -> dadd l, r, d // l + r -> dsub l, r, d // l - r -> dmul l, r, d // l * r -> dudiv l, r, d // l / r -> dsdiv l, r, d // l / r -> dumod l, r, d // l % r -> dsmod l, r, d // l % r -> dor l, r, d // bitwise orand l, r, d // bitwise andxor l, r, d // bitwise xor

(c) 2018 Ilfak Guilfanov

Opcodes: shifts (and rotations?)

• Shift (l)eft by the amount specified in (r)ight
• The result is stored into (d)estination
• Initially our microcode had rotation operations but they

turned out to be useless because they can not be nicely
represented in C

shl l, r, d // shift logical leftshr l, r, d // shift logical rightsar l, r, d // shift arithmetic right

(c) 2018 Ilfak Guilfanov

Opcodes: condition codes

• Perform the operation on (l)left and (r)ight
• Generate carry or overflow bits
• Store CF or OF into (d)estination
• We need these instructions to precisely track carry and

overflow bits
• Normally these instructions get eliminated during

microcode transformations

cfadd l, r, d // carry of (l+r)ofadd l, r, d // overflow of (l+r)cfshl l, r, d // carry of (l<<r)cfshr l, r, d // carry of (l>>r)

(c) 2018 Ilfak Guilfanov

Opcodes: unconditional flow control

• Initially calls have only the callee address
• The decompiler retrieves the callee prototype from the

database or tries to guess it
• After that the 'd' operand contains all information about the

call, including the function prototype and actual arguments

ijmp {sel, off} // indirect jmpgoto l // unconditional jmpcall l d // direct callicall {sel, off} d // indirect callret // return
call $___org_fprintf <...:“FILE *” &($stdout).4,"const char *" &($aArIllegalSwitc).4,_DWORD xds.4([ds.2:([ds.2:(ebx.4+#4.4)].4+#1.4)].1)>.0

(c) 2018 Ilfak Guilfanov

Opcodes: conditional jumps

• Compare (l)eft against (r)right and jump to (d)estination if
the condition holds

• Jtbl is used to represent 'switch' idioms

jcnd l, d //jnz l, r, d // ZF=0 Not Equaljz l, r, d // ZF=1 Equaljae l, r, d // CF=0 Above or Equaljb l, r, d // CF=1 Belowja l, r, d // CF=0 & ZF=0 Abovejbe l, r, d // CF=1 | ZF=1 Below or Equaljg l, r, d // SF=OF & ZF=0 Greaterjge l, r, d // SF=OF Greater or Equaljl l, r, d // SF!=OF Lessjle l, r, d // SF!=OF | ZF=1 Less or Equaljtbl l, cases // Table jump

(c) 2018 Ilfak Guilfanov

Opcodes: floating point operations

• Basically we have conversions and a few arithmetic
operations

• There is little we can do with these operations, they are
not really optimizable

• Other fp operations use helper functions (e.g. sqrt)
f2i l, d // int(l) => d; convert fp -> int, any sizef2u l, d // uint(l)=> d; convert fp -> uint,any sizei2f l, d // fp(l) => d; convert int -> fp, any sizei2f l, d // fp(l) => d; convert uint-> fp, any sizef2f l, d // l => d; change fp precisionfneg l, d // -l => d; change signfadd l, r, d // l + r => d; addfsub l, r, d // l - r => d; subtractfmul l, r, d // l * r => d; multiplyfdiv l, r, d // l / r => d; divide

(c) 2018 Ilfak Guilfanov

Opcodes: miscellaneous

• Some operations can not be expressed in microcode
• If possible, we use intrinsic calls for them (e.g. sqrtpd)
• If no intrinsic call exists, we use “ext” for them and only try

to keep track of data dependencies (e.g. “aam”)
• “und” is used when a register is spoiled in a way that we

can not predict or describe (e.g. ZF after mul)

nop // no operationund d // undefineext l, r, d // external insnpush lpop d

(c) 2018 Ilfak Guilfanov

More opcodes?

• We quickly reviewed all 72 instructions
• Probably we should extend microcode
• Ternary operator?
• Post-increment and post-decrement?
• All this requires more research

(c) 2018 Ilfak Guilfanov

Operands!

• As everyone else, initially we had only:
 constant integer numbers
 registers

• Life was simple and easy in the good old days!
• Alas, the reality is more diverse. We quickly added:

 stack variables
 global variables
 address of an operand
 list of cases (for switches)
 result of another instruction
 helper functions
 call arguments
 string and floating point constants

(c) 2018 Ilfak Guilfanov

Register operands

• The microcode engine provides unlimited (in theory)
number of microregisters

• Processor registers are mapped to microregisters:
 eax => microregisters (mreg) 8, 9, 10, 11
 al => mreg 8
 ah => mreg 9

• Usually there are more microregisters than the processor
registers. We allocate them as needed when generating
microcode

• Examples: eax.4rsi.8ST00_04.4

(c) 2018 Ilfak Guilfanov

Stack as microregisters

• I was reluctant to introduce a new operand type for stack
variables and decided to map the stack frame to
microregisters

• Like, the stack frame is mapped to the microregister #100
and higher

• A bright idea? Nope!
• Very soon I realized that we have to handle indirect

references to the stack frame
• Not really possible with microregisters
• But there was so much code relying on this concept that

we still have it
• Laziness pays off now and in the future (negatively)

(c) 2018 Ilfak Guilfanov

Stack as viewed by the decompiler

Shadow stkargs

Input stkargs

Return address
Saved registers
Local variables

Output stkargs(not visible in IDA)

inargtop

inargoff

minimal esp

typical ebp

minstkref

typical ebp

minargref

Local variables
stkvar base 0

Input stkargs

• Yellow part is mapped to microregisters
• Red is aliasable

(c) 2018 Ilfak Guilfanov

More operand types!

• 64-bit values are represented as pairs of registers
• Usually it is a standard pair like edx:eax
• Compilers get better and nowadays use any registers as a

pair; or even pair a stack location with a register: sp+4:esi
• We ended up with a new operand type:

 operand pair
• It consists of low and high halves
• They can be located anywhere (stack, registers, glbmem)

(c) 2018 Ilfak Guilfanov

Scattered operands

• The nightmare has just begun, in fact
• Modern compilers use very intricate rules to pass structs

and unions by value to and from the called functions
• A register like RDI may contain multiple structure fields
• Some structure fields may be passed on the stack
• Some in the floating registers
• Some in general registers (unaligned wrt register start)
• We had no other choice but to add

 scattered operands
that can represent all the above

(c) 2018 Ilfak Guilfanov

A simple scattered return value

• A function that returns a struct in rax:

• Assembler code:

struct div_t { int quot; int rem; };div_t div(int numer, int denom);

mov edi, esimov esi, 1000call _divmovsxd rdx, eaxsar rax, 20hadd [rbx], rdximul eax, 1000cdqeadd rax, [rbx+8]

(c) 2018 Ilfak Guilfanov

A simple scattered return value

• …and the output is:

• Our decompiler managed to represent things nicely!

• Similar or more complex situations exist for all 64-bit
processors

• Support for scattered operands is not complete yet but we
constantly improve it

v2 = div(a2, 1000);*a1 += v2.quot;result = a1[1] + 1000 * v2.rem;

(c) 2018 Ilfak Guilfanov

More detailed look at microcode transformations

• The initial “preoptimization” step uses very simple
constant and register propagation algorithm

• It is very fast
• It gets rid of most temporary registers and reduces the

microcode size by two
• Normally we use a more sophisticated propagation

algorithm
• It also works on the basic block level
• It is much slower but can:

 handle partial registers (propagate eax into an
expression that uses ah)

 move entire instruction inside another
 work with operands other that registers (stack and

global memory, pair and scattered operands)
(c) 2018 Ilfak Guilfanov

Global optimization

• We build the control flow graph
• Perform data flow analysis to find where each operand is

used or defined
• The use/def information is used to:

 delete dead code (if the instruction result is not used,
then we delete the instruction)

 propagate operands and instructions across block
boundaries

 generate assertions for future optimizations (we know
that eax is zero at the target of “jz eax” if there are no
other predecessors; so we generate “mov 0, eax”)

(c) 2018 Ilfak Guilfanov

Synthetic assertion instructions

• If jump is not taken, then we know that eax is zero

• Assertions can be propagated and lead to more
simplifications

jnz eax.4, #0, @5

blk5: ... mov #0.4, eax.4 ; assert...

falsetrue

(c) 2018 Ilfak Guilfanov

Simple algebraic transformations

• We have implemented (in plain C++) hundreds of very
small optimization rules. For example:

• They are simple and sound
• They apply to all cases without exceptions
• Overall the decompiler uses sound rules
• They do not depend on the compiler

(x-y)+y => xx- ~y => x+y+1x*m-x*n => x*(m-n)(x<<n)-x => (2**n-1)*x-(x-y) => y-x(~x) < 0 => x >= 0(-x)*n => x*-n

(c) 2018 Ilfak Guilfanov

More complex rules

• For example, this rule recognizes 64-bit subtractions:

• We have a swarm of rules like this. They work like little
ants :)

CMB18 (combination rule #18):sub xlow.4, ylow.4, rlow.4sub xhigh.4, (xdu.4((xlow.4 <u ylow.4))+yhigh.4), rhigh.4=>sub x.8, y.8, r.8
if yhigh is zero, then it can be optimized away
a special case when xh is zero:
sub xl, yl, rlneg (xdu(lnot(xl >=u yl))+yh), rh

(c) 2018 Ilfak Guilfanov

Data dependency dependent rules

• Naturally, all these rules are compiler-independent, they
use common algebraic number properties

• Unfortunately we do not have a language to describe
these rules, so we manually added these rules in C++

• However, the pattern recognition does not naively check if
the previous or next instruction is the expected one. We
use data dependencies to find the instructions that form
the pattern

• For example, the rule CMB43 looks for the 'low' instruction
by searching forward for an instruction that accesses the
'x' operand: CMB43:mul #(1<<N).4, xl.4, yl.4low (x.8 >>a #M.1), yh.4, M == 32-N

=>
mul x.8, #(1<<N).8, y.8(c) 2018 Ilfak Guilfanov

Interblock rules

• Some rules work across multiple blocks:
jl xh, yh, SUCCESS

jg xh, yh, @4

jb xl, yl, SUCCESS

FAILED: ...

SUCCESS: ...

jl x, y, SUCCESS

FAILED: ...
SUCCESS: ...

The “64bit 3-way check” rule transforms
this structure into simple:

(xh means high half of x
xl means low half of x
yh means high half of y
yl means low half of y)

(c) 2018 Ilfak Guilfanov

Interblock rules: signed division by power2

• Signed division is sometimes replaced by a shift:

A simple rule transforms it back:

jcnd !SF(x), b3

add x, (1<<N)-1, x

sar x, N, r

sdiv x, (1<<N), r

(c) 2018 Ilfak Guilfanov

Hooks

• It is possible to hook to the optimization engine and add
your own transformation rules

• The Decompiler SDK has some examples how to do it
• Currently it is not possible to disable an existing rule
• However, since (almost?) all of them are sound and do not

use heuristics, it is not a problem
• In fact the processor specific parts of the decompiler

internally use these hooks as well

(c) 2018 Ilfak Guilfanov

ARM hooks

• For example, the ARM decompiler has the following rule:

so that a construct like this: BX LR
will be converted into: RET

only if we can prove that the value of LR at the "BX LR"
instruction is equal to the initial value of LR at the entry
point.

• However, how do we find if we jump to the initial_lr? Data
analysis is to help us

ijmp cs, initial_lr => ret

(c) 2018 Ilfak Guilfanov

Data flow analysis

• In fact virtually all transformation rules are based on data
flow analysis. Very rarely we check the previous or the
next instruction for pattern matching

• Instead, we calculate the use/def lists for the instruction
and search for the instructions that access them

• We keep track of what is used and what is defined by
every microinstruction (in red). These lists are calculated
when necessary:
mov %argv.4, ebx.4 ; 4014E9 u=arg+4.4 d=ebx.4mov %argc.4, edi.4 ; 4014EC u=arg+0.4 d=edi.4mov &($dword_41D128).4, ST18_4.4 ; 4014EF u= d=ST18_4.4goto @12 ; 4014F6 u= d=

(c) 2018 Ilfak Guilfanov

Use-def lists

• Similar lists are maintained for each block. Instead of
calculating them on request we keep them precalculated:

• We keep both “must” and “may” access lists
• The values in parenthesis are part of the “may” list
• For example, an indirect memory access may read any

memory:

; 1WAY-BLOCK 6 INBOUNDS: 5 OUTBOUNDS: 58 [START=401515 END=401517]; USE: ebx.4,ds.2,(GLBLOW,GLBHIGH); DEF: eax.4,(cf.1,zf.1,sf.1,of.1,pf.1,edx.4,ecx.4,fps.2,fl.1,; c0.1,c2.1,c3.1,df.1,if.1,ST00_12.12,GLBLOW,GLBHIGH); DNU: eax.4

add [ds.2:(ebx.4+#4.4)].4, #2.4, ST18_4.4; u=ebx.4,ds.2,(GLBLOW,GLBHIGH); d=ST18_4.4

(c) 2018 Ilfak Guilfanov

Usefulness of use-def lists

• Based on use-def lists of each block the decompiler can
build global use-def chains and answer questions like:

 Is a defined value used anywhere? If yes, where
exactly? Just one location? If yes, what about moving
the definition there? If the value is used nowhere,
what about deleting it?

 Where does a value come from? If only from one
location, can we propagate (or even move) it?

 What are the values are the used but never
defined?These are the candidates for input
arguments

 What are the values that are defined but never used
but reach the last block? These are the candidates for
the return values

(c) 2018 Ilfak Guilfanov

Global propagation in action

• Image we have code like this:

mov #5.4, esi.4
Do some stuffthat does not modify esi.4
call func(esi.4)

blk1

blk3

blk1blk1

blk2

(c) 2018 Ilfak Guilfanov

Global propagation in action

• The use-def chains clearly show that esi is defined only in
block #1:

Therefore it can be propagated:

mov #5.4, esi.4
Do some stuffthat does not modify esi.4
call func(esi.4)

blk1

blk3

blk1blk1

blk2

use:
def: esi.4{3}

use: ...
def: ...

use: esi.4{1}
def: ...

call func(#5.4)

(c) 2018 Ilfak Guilfanov

Data flow analysis

• The devil is in details
• Our analysis engine can handle partial registers (they are

a pain)
• Big endian and little endian can be handled as well

(however, we sometimes end up with the situations when
a part of the operand is little endian and another part – big
endian)

• The stack frame and registers are handled
• Registers can be addressed only directly
• Stack location can be addressed indirectly and our

analysis takes this into account
• Well, we have to make some assumptions...

(c) 2018 Ilfak Guilfanov

Aliasability

• Take this example:

can we claim that %stkvar == 1 after stx?
• Naturally, in general case we can not
• But it turns out that in some case we can claim it
• Namely:

 If we haven't taken the address of any stack variable
 Or, if we did, the address we took is higher (*)
 Or, if the address is lower, it was not moved into eax

• Overall it is a tough question

mov #1.4, %stkvar ; store 1 into stkvarstx #0.4, ds.2, eax.4 ; store 0 into [eax]call func(%stkvar)

(*)note: yes, this is one of the assumptions our decompiler makes
(c) 2018 Ilfak Guilfanov

Stack as viewed by the decompiler

Shadow stkargs

Input stkargs

Return address
Saved registers
Local variables

Output stkargs(not visible in IDA)

inargtop

inargoff

minimal esp

typical ebp

minstkref

typical ebp

minargref

Local variables
stkvar base 0

Input stkargs

• Yellow part is mapped to microregisters
• Red is aliasable

(c) 2018 Ilfak Guilfanov

Minimal stack reference

• Aliasability is unsolvable problem in general
• We should optimize things only if we can prove the

correctness of the transformation
• We keep track of expressions like &stkvar and calculate

the minimal reference (minstkref)
• We assume that everything below minstkref can be

accessed only directly, i.e. is not aliasable
• We propagate this information over the control graph
• One value is maintained per block (we could probably

improve things by calculating minstkref for each
instruction)

• A similar value is maintained for the incoming stack
arguments (minargref)

(c) 2018 Ilfak Guilfanov

Minstkref propagation

• We use the control flow graph:
lea ecx, [esp+10] ; take offset 10call func ; probably uses ecxmov rax, [esp+14] ; stkvar sp+14...

lea ecx, [esp+20] ; take offset 20call func ; probably uses ecxmov rax, [esp+14] ; microregister ST14...

mov rax, [esp+14] ; stkvar sp+14...

minstkref=10

minstkref=10

minstkref=20

(c) 2018 Ilfak Guilfanov

Testing the microcode

• Microcode if verified for consistency after every
transformation

• BTW, third party plugins should do the same
• Very few microcode related bug reports
• We have quite extensive test suites that constantly grow
• A hundred or so of processors cores running tests
• However, after publishing microcode there will be a new

wave of bug reports
• Found a bug? Send us the database with the description

how to reproduce it
• Most problems are solved within one day or faster

(c) 2018 Ilfak Guilfanov

Publishing microcode

• The microcode API for C++ will be available in the next
version of IDA

• Python API won't be available yet
• We will start beta testing the next week
• Decompiler users with active support: feel free to send an

email to support@hex-rays.com if you want to participate
• Check out the sample plugins that show how to use the

new API

(c) 2018 Ilfak Guilfanov

mailto:support@hex-rays.com

Was it interesting?

Thank you for your attention!
Questions?

(c) 2018 Ilfak Guilfanov

