icrocode



Presentation Outline

Decompiler architecture
Overview of the microcode
Opcodes and operands
Stack and registers
Data flow analysis, aliasibility
Microcode availability

- Your feedback

Online copy of this presentation is available at
http://www.hex-rays.com/products/ida/support/ppt/recon2018.ppt




Hex-Rays Decompiler

. Interactive, fast, robust, and programmable decompiler
. Can handle x86, x64, ARM, ARM64, PowerPC

Runs on top of IDA Pro

-Has been evolving for more than 10 years

nternals were not really published

- Namely, the intermediate language




Decompiler architecture

- |t uses very straightforward sequence of steps:
Generate microcode

i

Transform microcode (optimize, resolve memrefs, analyze calls, etc)

Allocate local vars

l

Generate ctree

l

Beautify ctree

l

Print ctree




Decompiler architecture

- We will focus on the first two steps:
Generate microcode

i

Transform microcode | (optimize, resolve memrefs, analyze calls, etc)

Allocate local vars

l

Generate ctree

l

Beautify ctree

l

Print ctree

018 lifak



Why microcode?

- It helps to get rid of the complexity of processor
iInstructions

- Also we get rid of processor idiosyncrasies. Examples:

~

~

~

x86: segment registers, fpu stack
ARM: thumb mode addresses

PowerPC: multiple copies of CF register (and other
condition registers)

MIPS: delay slots
Sparc: stack windows

It makes the decompiler portable. We “just” need to
replace the microcode generator

- Writing a decompiler without an intermediate language
looks like waste of time




Is implementing an IR difficult?

. Your call ;)
- How many IR languages to you know?




Why not use an existing IR?

There are tons of other intermediate languages: LLVM,
REIL, Binary Ninja's ILs, RetDec's IL, eftc.

- Yes, we could use something

But | started to work on the microcode when none of the
above languages existed

This is the main reason why we use our own IR

mov.d EAX,, TO
ldc.d #5,, T1
mkcadd.d TO, T1, CF
mkoadd.d TO, T1, CF
add.d TO, T1, TT
setzd TT,, ZF
sets.d TT,, ZF
mov.d TT,, EAX

(this is how it looked like in 1999)




A long evolution

. | started to work on the microcode in 1998 or earlier
- The name is nothing fancy but reflects the nature of it

. Some design decisions turned out to be bad (and some of
them are already very difficult to fix)

- For example, the notion of virtual stack registers
- We will fix it, though. Just takes time
. Even today we modify our microcode when necessary

- For example, | reshuffled the instruction opcodes for this
talk...




Design highlights

.- Simplicity:
i No processor specific stuff
One microinstruction does one thing

Small number of instructions (only 45 in 1999, now
72)

Simple instruction operands (register, number,
memory)

Consider only compiler generated code
Discard things we do not care about:

Instruction timing (anyway it is a lost battle)
Instruction order (exceptions are a problem!)

Order of memory accesses (later we added logic to
preserve indirect memory accesses)

Handcrafted code




Generated microcode

Initially the microcode looks like RISC code:

Memory loads and stores are done using dedicated
microinstructions

The desired operation is performed on registers
Microinstructions have no side effects

Each output register is initialized by a separate
microinstruction

It is very verbose. Example:

004014FB mov eax, [ebx+4]
004014FE mov dl, [eax+1]
00401501 sub dl, 61h;'a’
00401504 jz shortloc_401517




Initial microcode: very verbose

2. 0 mov—ebx4,eoff 44— 4014FB u=ebx4 —d=eoff4
.1Tmov ds.2, seg.2 ; 4014FB u=ds.2  d=seg.2
.2add eoff4, #4.4, eoff.4 ;4014FB u=eoff.4 d=eoff.4
.3 ldx seg.2, eoff.4, et1.4 ;4014FB u=eoff.4,seg.2,
; (STACK,GLBMEM) d=et1.4

NINDN

2.4 mov et1.4, eax.4 : 4014FB u=et1.4 d=eax.4
2.5 mov eax.4, eoff.4 : 4014FE u=eax.4 d=eoff.4
2.6 mov ds.2, seg.2 ; 4014FE u=ds.2  d=seg.2
2.7 add eoff.4, #1.4, eoff.4 ;4014FE u=eoff.4 d=eoff.4
2.8ldx seg.2, eoff.4,t1.1 ; 4014FE u=eoff.4,seg.2,
: (STACK,GLBMEM) d=t1.1
2.9mov t1.1,dl.1 : 4014FE u=t1.1 d=dl.1
2.10 mov #0x61.1, t1.1 : 401501 u= d=t1.1

2.11 setb dl.1, t1.1, cf.1 ; 401501 u=dl.1,t1.1 d=cf.1
2.12 seto dl.1, t1.1, of.1 ; 401501 u=dl.1,t1.1 d=of.1
2.13sub dl.1, t1.1, dl.1 ; 401501 u=dl.1,t1.1 d=dl.1
2.14 setz dl.1, #0.1, zf.1 ; 401501 u=dI.1 d=zf.1
2.15 setp dl.1, #0.1, pf.1 ; 401501 u=dl.1  d=pf.1

2.16 sets dl.1, sf.1 : 401501 u=dl.1 d=sf.1
2.17 mov cs.2, seg.2 ; 401504 u=cs.2  d=seg.2
2.18 mov #0x401517.4, eoff.4 ;401504 u= d=eoff.4

2.19 jend zf.1, $loc_401517 : 401504 u=zf.1




The first optimization pass

2.0ldx ds.2, (ebx.4+#4.4), eax.4 ; 4014FB u=ebx.4,ds.2,
{(STACK,GLBMEM) d=eax.4

2.11dx ds.2, (eax.4+#1.4), dl.1; 4014FE u=eax.4,ds.2,
{(STACK,GLBMEM) d=dI.1

2 setb dl.1, #0x61.1, cf.1 ;401501 u=dl.1 d=cf.1

3seto dl.1, #0x61.1, of.1 ;401501 u=dl.1 d=of.1

4 sub dI.1, #0x61.1,dl.1 ;401501 u=dl.1 d=dl.1

5setz dl.1, #0.1, zf.1 : 401501 u=dl.1 d=zf.1

6 setp dl.1, #0.1, pf.1 ; 401501 u=dl.1 d=pf.1

7 sets dl.1, sf.1 ;401501 u=dl.1 d=sf.1

8 jcnd zf.1, $loc_401517 : 401504 u=zf.1

NIV INNNN

Only 8 microinstructions

Some intermediate registers disappeared
Sub-instructions appeared

. Still too noisy and verbose




Further microcode transformations

2.1 1dx ds.2{3}, ([ds.2{3}:(ebx.4+#4.4)].4+#1.4), d|.1{5} ; 4014FE

; u=ebx.4,ds.2,(GLBLOW,sp+20..,GLBHIGH) d=dl.1
2.2sub dl.1{5}, #0x61.1, dl.1{6} ; 401501 u=dl.1 d=dl.1
2.3jz dL1{6}, #0.1, @7 ;401504 u=dl.1

And the final code is:

2.0jz [ds.2{4}:([ds.2{4}:(ebx.4{8}+#4.4{7}].4{6}+#1.4){5}].1{3},
#0x61.1,
@7
; 401504 u=ebx.4,ds.2,(GLBLOW,GLBHIGH)

This code is ready to be translated to ctree.
(numbers in curly braces are value numbers)

The output will look like this: it (argv[1][1]=="a")




Minor details

- Reading microcode is not easy (but hey, it was not
designed for that! :)

- All operand sizes are spelled out explicitly
- The initial microcode is very simple (RISC like)

- As we transform microcode, nested subinstructions may
appear

- We implemented the translation from processor
instructions to microinstructions in plain C++

- We do not use automatic code generators or machine
descriptions to generate them. Anyway there are too many
processor specific details to make them feasible




Opcodes: constants and move

. Copy from (I) to (d)estination
- Operand sizes must match

Idc I, d //load constant
mov |, d // move




Opcodes: changing operand size

Copy from (l) to (d)estination
Operand sizes must differ

Since real world programs work with partial registers (like
al, ah), we absolutely need low/high

xds |, d // extend (signed)
xdu |, d //extend (unsigned)
low |, d //take low part
highl, d //take high part




Opcodes: load and store

{sel, off} is a segment.offset pair

Usually seg is ds or cs; for processors with flat memory it
IS ignored

'off' is the most interesting part, it is a memory address

stx |, sel, off // store value to memory
ldx sel, off, d // load value from memory

Example:

ldx ds.2, (ebx.4+#4.4), eax.4
stx #O0x2E.1, ds.2, eax.4




Opcodes: comparisons

. Compare (l)left against (r)right
- The result is stored into (d)estination, a bit register like
CF,ZF,SF,...

sets |, d //sign

setp I, r,d // unordered/parity
setnz |, r, d // not equal

setz |, r,d // equal

setael, r,d // above or equal
setb I, r,d // below

seta |, r,d // above

setbe |, r, d // below or equal
setg |, r,d // greater

setge |, r, d // greater or equal
setl I, r,d //less

setle |, r,d //less or equal
seto |, r,d // overflow of (I-r)




Opcodes: arithmetic and bitwise operations

- Operand sizes must be the same
- The result is stored into (d)estination

negl, d //-I ->d
lnotl, d //! ->d
bnotl, d //~I ->d
add I,r,d //1+r->d
sub I, r,d //1-r->d
mul |, r,d //1*r->d
udivl, r,d //1/r->d
sdivl,r,d //1/r->d
umodl, r,d //1%r->d
smodl,r,d //1%r->d
or |, r,d //bitwise or
and |, r,d // bitwise and
xor |, r,d // bitwise xor

018 Iifak C



Opcodes: shifts (and rotations?)

. Shift (I)eft by the amount specified in (r)ight
- The result is stored into (d)estination

- Initially our microcode had rotation operations but they
turned out to be useless because they can not be nicely
represented in C

shl I, r,d //shift logical left
shr |, r,d //shift logical right
sar |, r,d // shift arithmetic right




Opcodes: condition codes

Perform the operation on (l)left and (r)ight
Generate carry or overflow bits
Store CF or OF into (d)estination

We need these instructions to precisely track carry and
overflow bits

Normally these instructions get eliminated during
microcode transformations

cfadd |, r,d //carry of (I+r)
ofadd |, r, d // overflow of (I+r)
cfshll,r,d //carry of (I<<r)
cfshrl, r,d //carry of (I>>r)




Opcodes: unconditional flow control

- Initially calls have only the callee address
- The decompiler retrieves the callee prototype from the
database or tries to guess it

. After that the 'd' operand contains all information about the
call, including the function prototype and actual arguments

ijmp {sel, off} //indirectjmp

goto | // unconditional jmp
call I d //directcall

icall {sel, off} d // indirect call

ret /] return

call $__ org_fprintf <...:
“FILE *" &($stdout).4,
"const char *" &($aArlllegalSwitc).4,
_DWORD xds.4([ds.2:([ds.2:(ebx.4+#4.4)].4+#1.4)].1)>.0




Opcodes: conditional jumps

. Compare (l)eft against (r)right and jump to (d)estination if
the condition holds
. Jtbl is used to represent 'switch' idioms

jend I, d //

jnz |, r,d //ZF=0 Not Equal

jz 1, r,d //ZF=1 Equal

jae I, r,d //CF=0 Above or Equal
jb I, r,d //CF=1 Below

ja I,r,d //CF=0&ZF=0 Above

jbe |, r,d //CF=1| ZF=1 Below or Equal
jg |, r,d //SF=0OF & ZF=0 Greater

jge I, r,d //SF=0OF Greater or Equal
jl 1, r,d //SFI=0OF Less

jle 1, r,d //SFI=0OF | ZF=1 Less or Equal
jtbl 1, cases // Table jump




Opcodes: floating point operations

- Basically we have conversions and a few arithmetic
operations

- There is little we can do with these operations, they are
not really optimizable

- Other fp operations use helper functions (e.g. sqrt)

f2i 1, d //int(l) =>d; convert fp -> int, any size
f2u I, d // uint(l)=> d; convert fp -> uint,any size
i2f 1, d //fp(l) =>d; convertint ->fp, any size
i2f 1, d //fp(l) =>d; convert uint-> fp, any size
f2t I, d //1 =>d; change fp precision

fneg I, d //-1 =>d; change sign

fadd |,r,d //1+r =>d; add

fsub I, r,d //1-r =>d; subtract

fmul |, r,d //1*r =>d; multiply

fdiv I, r,d //1/r =>d; divide




Opcodes: miscellaneous

- Some operations can not be expressed in microcode
- If possible, we use intrinsic calls for them (e.g. sqrtpd)

- If no intrinsic call exists, we use “ext” for them and only try
to keep track of data dependencies (e.g. “aam?)

- “und” is used when a register is spoiled in a way that we
can not predict or describe (e.g. ZF after mul)

nop // no operation
und d // undefine
ext |, r,d // external insn
push |

pop d




More opcodes?

N

- We quickly reviewed all 72 instructions
- Probably we should extend microcode
- Ternary operator?

- Post-increment and post-decrement?

- All this requires more research




Operands!

- As everyone else, initially we had only:
constant integer numbers
registers
Life was simple and easy in the good old days!

- Alas, the reality is more diverse. We quickly added:
stack variables

global variables

address of an operand

list of cases (for switches)

result of another instruction

helper functions

call arguments

string and floating point constants

2018 lifak G



Register operands

- The microcode engine provides unlimited (in theory)
number of microregisters

Processor registers are mapped to microregisters:

) eax => microregisters (mreg) 8, 9, 10, 11

al => mreg 8

ah =>mreg 9

Usually there are more microregisters than the processor

registers. We allocate them as needed when generating
microcode

Examples:

~

eax.4
rsi.8
STO00 04.4




Stack as microregisters

- | was reluctant to introduce a new operand type for stack
variables and decided to map the stack frame to

microregisters

- Like, the stack frame is mapped to the microregister #100

and higher
- A bright idea”? Nope!

- Very soon | realized that we have to handle indirect

references to the stac
- Not really possible wit

- But there was so muc
we still have it

K frame
N microregisters
n code relying on this concept that

- Laziness pays off now and in the future (negatively)




Stack as viewed by the decompiler

- Yellow part is mapped to microregisters

- Red is aliasable

stkvar base 0

Input stkargs

Input stkargs

A

Shadow stkargs

Return address

Saved registers

Local variables

Local variables

Output stkargs
(not visible in IDA)

inargtop
minargref

inargoff

typical ebp

minstkref

minimal esp




More operand types!

. 64-bit values are represented as pairs of registers
- Usually it is a standard pair like edx:eax

- Compilers get better and nowadays use any registers as a
pair; or even pair a stack location with a register: sp+4:esi

- We ended up with a new operand type:
i operand pair
- It consists of low and high halves
- They can be located anywhere (stack, registers, glbmem)




Scattered operands

- The nightmare has just begun, in fact

- Modern compilers use very intricate rules to pass structs
and unions by value to and from the called functions

- A register like RDI may contain multiple structure fields
. Some structure fields may be passed on the stack

- Some in the floating registers

. Some in general registers (unaligned wrt register start)

- We had no other choice but to add
scattered operands
that can represent all the above




A simple scattered return value

N

A function that returns a struct in rax:

struct div_t { int quot; int rem; };
div_t div(int numer, int denom);

. Assembler code:

mov edi, esi
mov esi, 1000
call _div

movsxd rdx, eax
sar rax, 20h
add [rbx], rdx
imul eax, 1000
cdge

add rax, [rbx+8]




A simple scattered return value

..and the output is:

v2 =div(a2, 1000);
*al +=v2.quot;
result=a1[1] + 1000 * v2.rem;

Our decompiler managed to represent things nicely!

Similar or more complex situations exist for all 64-bit
processors

Support for scattered operands is not complete yet but we
constantly improve it




More detailed look at microcode transformations

- The initial “preoptimization” step uses very simple
constant and register propagation algorithm
It is very fast

It gets rid of most temporary registers and reduces the
microcode size by two

Normally we use a more sophisticated propagation
algorithm

It also works on the basic block level
It is much slower but can:

i handle partial registers (propagate eax into an
expression that uses ah)

move entire instruction inside another
work with operands other that registers (stack and

lobal memory, pair and scattered operands)
(c) 2018 Iifak G i |



Global optimization

- We build the control flow graph

Perform data flow analysis to find where each operand is
used or defined

- The use/def information is used to:

delete dead code (if the instruction result is not used,
then we delete the instruction)

propagate operands and instructions across block
boundaries

generate assertions for future optimizations (we know
that eax is zero at the target of “jz eax” if there are no
other predecessors; so we generate “mov 0, eax”)




Synthetic assertion instructions

- If jump is not taken, then we know that eax is zero

jnz eax.4, #0, @5

%) /5
< N

blk5: mov #0.4, eax.4 : assert

- Assertions can be propagated and lead to more
simplifications




Simple algebraic transformations

We have implemented (in plain C++) hundreds of very
small optimization rules. For example:

(X-y)ty =>X

X-~y =>x+y+1
X*mM-x*n => x*(m-n)
(Xx<<n)-x => (2**n-1)*x
(xy) =>yx

(~x) <0 =>x>=0
(-X)*n =>x*-n

They are simple and sound

They apply to all cases without exceptions
Overall the decompiler uses sound rules
They do not depend on the compiler

2018 lifak G



More complex rules

- For example, this rule recognizes 64-bit subtractions:

CMB18 (combination rule #18):
sub xlow.4, ylow.4, rlow.4
sub xhigh.4, (xdu.4((xlow.4 <u ylow.4))+yhigh.4), rhigh.4

=>
sub x.8,y.8,r.8
if yhigh is zero, then it can be optimized away

a special case when xh is zero:

sub  xl, yl, rl
neg (xdu(lnot(xl >=u yl))+yh), rh

- We have a swarm of rules like this. They work like little




Data dependency dependent rules

- Naturally, all these rules are compiler-independent, they
use common algebraic number properties

- Unfortunately we do not have a language to describe
these rules, so we manually added these rules in C++

- However, the pattern recognition does not naively check if
the previous or next instruction is the expected one. We
use data dependencies to find the instructions that form

the pattern
- For example, the rule CMB43 looks for the 'low' instruction
by searching forward for an instruction that accesses the

'X' operand: | cmB43:
mul  #(1<<N).4, x1.4, yl.4
low (x.8 >>a #M.1), yh.4, M == 32-N

=>

(c) 2018 IIfakm mul x.8, #(1<<N).8, y.8




Interblock rules

. Some rules work across multiple blocks:

jl xh, yh, SUCCESS

jg xh, yh, @4 SUCCESS: ...

jb xI, yl, SUCCESS

The “64bit 3-way check” rule transforms

» FAILED: ...
this structure into simple:
(xh means high half of x jIx,y, SUCCESS
xI means low half of x \, SUCCESS: ...
yh means high half of y
yl means low half of y) FAILED: ..

018 lifak



Interblock rules: signed division by power2

N

Signed division is sometimes replaced by a shift:

jend ISF(x), b3

add x, (1<<N)-1, x

A 4

sar x, N, r

A simple rule transforms it back:

sdiv X, (1<<N), r




Hooks

- It is possible to hook to the optimization engine and add
your own transformation rules

- The Decompiler SDK has some examples how to do it
- Currently it is not possible to disable an existing rule

- However, since (almost?) all of them are sound and do not
use heuiristics, it is not a problem

- In fact the processor specific parts of the decompiler
iInternally use these hooks as well




ARM hooks

- For example, the ARM decompiler has the following rule:

ijmp cs, initial_lr => ret

so that a construct like this: BX LR
will be converted into: RET

only if we can prove that the value of LR at the "BX LR"
instruction is equal to the initial value of LR at the entry
point.

- However, how do we find if we jump to the initial_Ir? Data
analysis is to help us

2018 lifak G



Data flow analysis

- In fact virtually all transformation rules are based on data
flow analysis. Very rarely we check the previous or the
next instruction for pattern matching

- |Instead, we calculate the use/def lists for the instruction
and search for the instructions that access them

- We keep track of what is used and what is defined by
every microinstruction (in red). These lists are calculated

when necessary:

mov  %argv.4, ebx.4 ;4014E9 u=arg+4.4 d=ebx.4

mov %argc.4, edi.4 ;4014ECu=arg+0.4 d=edi.4

mov &($dword_41D128).4,ST18_4.4; 4014EFu=  d=ST18 4.4
goto @12 ; 4014F6 u=d=




Use-def lists

. Similar lists are maintained for each block. Instead of
calculating them on request we keep them precalculated:

; TWAY-BLOCK 6 INBOUNDS: 5 OUTBOUNDS: 58 [START=401515 END=401517]
; USE: ebx.4,ds.2,(GLBLOW,GLBHIGH)

; DEF: eax.4,(cf.1,zf.1,sf.1,0f.1,pf.1,edx.4,ecx.4,fps.2,fl.1,

; c0.1,c2.1,c3.1,df.1,if.1,ST00_12.12,GLBLOW,GLBHIGH)
: DNU: eax.4

- We keep both “must” and “may” access lists
- The values in parenthesis are part of the “may” list

- For example, an indirect memory access may read any
memory:

add [ds.2:(ebx.4+#4.4)].4, #2.4, ST18 4.4
; u=ebx.4,ds.2,(GLBLOW,GLBHIGH)
:d=ST18 4.4




Usefulness of use-def lists

Based on use-def lists of each block the decompiler can
bund global use-def chains and answer questions like:

Is a defined value used anywhere? If yes, where
exactly? Just one location? If yes, what about moving
the definition there? If the value is used nowhere,
what about deleting it?

Where does a value come from? If only from one
location, can we propagate (or even move) it?

What are the values are the used but never
defined?These are the candidates for input
arguments

What are the values that are defined but never used
but reach the last block? These are the candidates for
the return values




Global propagation in action

—"

- Image we have code like this:

blk1 mov #5.4, esi.4

blk2 | Do some stuff
that does not modify esi.4

blk3 | call func(esi.4)




Global propagation in action

The use-def chains clearly show that esi is defined only in

block #1:

blk1 mov #5.4, esi.4

blk2 | Do some stuff
that does not modify esi.4

blk3 | call func(esi.4)

Therefore it can be propagated:

call func(#5.4)

use:
def: esi.4{3}

use: ...
def: ...

use: esi.4{1}
def: ...




Data flow analysis

- The devil is In details

- Our analysis engine can handle partial registers (they are
a pain)

- Big endian and little endian can be handled as well
(however, we sometimes end up with the situations when

a part of the operand is little endian and another part — big
endian)

.- The stack frame and registers are handled
- Registers can be addressed only directly

. Stack location can be addressed indirectly and our
analysis takes this into account

- Well, we have to make some assumptions...




Aliasability

Take this example:

mov #1.4, %stkvar ; store 1 into stkvar
stx #0.4, ds.2, eax.4 ; store 0 into [eax]
call func(%stkvar)

can we claim that %stkvar == 1 after stx?
Naturally, in general case we can not

But it turns out that in some case we can claim it
Namely:

~

If we haven't taken the address of any stack variable
Or, if we did, the address we took is higher (*)

Or, if the address is lower, it was not moved into eax
Overall it is a tough question

~

(*)note: yes, this is one of the assumptions our decompiler makes



Stack as viewed by the decompiler

- Yellow part is mapped to microregisters

- Red is aliasable

stkvar base 0

Input stkargs

Input stkargs

A

Shadow stkargs

Return address

Saved registers

Local variables

Local variables

Output stkargs
(not visible in IDA)

inargtop
minargref

inargoff

typical ebp

minstkref

minimal esp




Minimal stack reference

- Aliasability is unsolvable problem in general

- We should optimize things only if we can prove the
correctness of the transformation

- We keep track of expressions like &stkvar and calculate
the minimal reference (minstkref)

- We assume that everything below minstkref can be
accessed only directly, i.e. is not aliasable

- We propagate this information over the control graph

- One value is maintained per block (we could probably
improve things by calculating minstkref for each
instruction)

- A similar value is maintained for the incoming stack
arguments (minargref)

.. il




Minstkref propagation

- We use the control flow graph:

lea ecx, [esp+10]; take offset 10
call func ; probably uses ecx
mov rax, [esp+14]; stkvar sp+14

lea ecx, [esp+20]; take offset 20
call func ; probably uses ecx
mov rax, [esp+14]; microregister ST14

mov rax, [esp+14]; stkvar sp+14

minstkref=10

minstkref=20

minstkref=10




Testing the microcode

- Microcode if verified for consistency after every
transformation

- BTW, third party plugins should do the same

- Very few microcode related bug reports

- We have quite extensive test suites that constantly grow
- A hundred or so of processors cores running tests

- However, after publishing microcode there will be a new
wave of bug reports

- Found a bug? Send us the database with the description
how to reproduce it

- Most problems are solved within one day or faster




Publishing microcode

- The microcode API for C++ will be available in the next
version of IDA

- Python APIl won't be available yet
- We will start beta testing the next week

- Decompiler users with active support: feel free to send an
email to if you want to participate

. Check out the sample plugins that show how to use the
new API



mailto:support@hex-rays.com

Was it interesting?

Thank you for your attention!
Questions?




